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Abstract

Purpose – To present a new hybrid differencing scheme for the numerical solution of an
electromigration-diffusion equation. The value of this work is evidenced by demonstrated
improvement in the simulation of the Fu and Chan experiment when using the hybrid scheme.

Design/methodology/approach – A hybrid differencing scheme is developed which is based upon
the solution of the pseudo-steady state electromigration-diffusion equation. In this scheme, a
weighting parameter is calculated that varies the relative influence of the upwind node (relative to the
direction of electromigration). This scheme significantly enhances the accuracy of electrochemical
system mass transport models.

Findings – The hybrid scheme was compared to the upwind scheme. Use of the new hybrid scheme
improved the accuracy of the model predictions by as much as 87 percent compared to the upwind
scheme. However, use of the new scheme also increased the simulation time by between 6 and 43
percent. Deviations from electroneutrality and the presence of an activity coefficient gradient were
detrimental to the stability of the hybrid scheme.

Research limitations/implications – This scheme is presented in the paper as an one-dimensional
(1D) scheme. However, it could be extended to more than 1D but some artificial viscosity may result.

Practical implications – The hybrid scheme developed and demonstrated herein is useful for
researchers developing mass transport models of electrochemical systems. It has been proven capable
of improving the accuracy of electrolyte mass transport models.

Originality/value – This is the first hybrid differencing scheme designed for the special
characteristics of electrochemical mass transport systems. It greatly improves the accuracy of
simulation results. This work is useful to those who mathematically model electrochemical
systems.
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Nomenclature
C ¼ molar concentration (mol/m3)
D ¼ diffusion coefficient (m2/s)
F ¼ Faraday’s constant (96,487 C/mol)
G ¼ rate of production or consumption via

reactions (mol/s)
i ¼ current density (A/m2)
k1 ¼ constant of integration
k2 ¼ constant of integration
N ¼ mass flux (mol/(m2 s))
P ¼ Peclet number

P0 ¼ Peclet number corrected for non-ideal
solution behaviour

r1 ¼ root of quadratic expression
r2 ¼ root of quadratic expression
R ¼ universal gas constant

(8.3145 J/mol K)
t ¼ time (s)
T ¼ temperature (K)
u ¼ mobility (m2 mol/J s)
kv ¼ velocity (m/s)
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x ¼ spatial coordinate (m)
z ¼ charge number

Greek letters
a ¼ upwind parameter
b ¼ constant of integration
g ¼ activity coefficient
d ¼ charge density (C/m3)
1 ¼ permittivity (Farad/m)
F ¼ electrical potential (V)
k ¼ conductivity (S/m)
m ¼ chemical potential (J/mol)
~m ¼ electrochemical potential (J/mol)
j ¼ coefficient in
c ¼ coefficient in (m21)

z ¼ coefficient in (m22)
t ¼ constant of integration

Superscripts and subscripts
a ¼ anion
c ¼ cation
dp ¼ diffusion potential
e ¼ east interface
E ¼ east node
i ¼ index
j ¼ index
P ¼ point node
w ¼ west interface
W ¼ west node
0 ¼ old value

1. Introduction
Considerable research effort has been focused upon technological areas in which the
understanding of electrochemical kinetics coupled with electrolytic mass transport is
of paramount importance. Such areas include corrosion control, energy generation
via fuel cells, electrochemical separation techniques including ion exchange and
electrophoresis, and electrochemical reactors. This research is focused upon the
accurate modeling of electrolyte mass transport under the influence of an encompassing
electrical field. A new differencing scheme for mass transport was developed and then
validated against the moving boundary experiment (Fu and Chan, 1984).

Several differencing schemes have been developed for solving the
convection-diffusion equation. The idea of an upwind differencing scheme (UDS)
was first introduced by Courant et al. (1952) and subsequent work by Barakat and
Clark (1966), Gentry et al. (1966) and Runchal and Wolfshtein (1969) followed. UDS
replaces first-order derivative expressions with forward finite difference analogs. This
scheme is appropriate for highly convective problems; only the upwind node influences
the control volume. The central differencing scheme (CDS), appropriate for diffusive
problems, employs central finite difference discretization thus equally dispersing
influence to all physical control volume boundaries. Other schemes have since been
developed which are appropriate where neither convection nor diffusion dominate.
These schemes compromise between UDS and CDS based upon local physics
(Patankar and Spalding, 1970; Spalding, 1972; Raithby and Torrence, 1974).

The electrolyte mass transport equation is unique from the convection-diffusion
equation because an additional condition is added. Around each ion is a cloud of ions of
opposing charge which, at equilibrium, exactly balance the space-averaged charge.
However, when an electrolyte is a transport medium between two electrodes of
differing electrical potential, a small portion of the Gibb’s free energy that drives the
coupled electrode charge transfer, mass transport, and chemical equilibrium process is
stored in the electrolytic solution as charge density. Although small, the charge density
has a large impact on the second order gradient of the electrical potential field; this
feature induces significant instability in mass transport calculations. Therefore,
ensuring a very small charge density in the solution is of paramount importance when
simulating electrolytic mass transfer. In this work, mass transport is assumed to occur

A hybrid
differencing

scheme

843



in a solution of moderate dilution (Newman, 1973). The mass transport equation for
such a solution is written as:

›Ci

›t
¼ 2ziuiF

7Ciði þ idpÞ

k
þ Ci

d

1

� �
þ Dið7

2Ci þ 7Ci7 lngi þ Ci7
2ln giÞ þ Gi ð1Þ

Equation (1) is the electromigration-diffusion transport equation and its solution is the
focus of this work.

Accurately modeling electrolytic mass transport is essential when developing
predictive models for localized corrosion. Previous authors have prescribed upwind
parameters based upon the local Peclet number or have simply assumed electromigrative
domination. Walton et al. (1996) modeled the crevice corrosion of type 304 stainless steel
using UDS when the absolute value of the Peclet number was greater than two and CDS
otherwise. Evitts (1997), Watson (1989), Watson and Postlethwaite (1990a, b, 1991) and
Heppner et al. (2002) modeled the initiation of crevice corrosion in passive metals using
UDS. To this point, no differencing scheme has been developed which uses an
electromigration-diffusion balance equation to prescribe appropriate upwind parameters
for mass transport under the influence of a potential gradient. For this reason, a HDS has
been developed which varies the upwind parameter according to the solution of the
pseudo-steady state electromigration-diffusion equation. This new differencing scheme
enables more accurate prescription of the upwind parameter where neither
electromigration nor diffusion dominates the mass transport process.

2. Development of the electrolyte mass transport hybrid differencing
scheme
2.1 Background
The electrochemical potential gradient, which is composed of activity gradient and
potential gradient contributions, is the sole driving force for mass transport of ions in a
stagnant electrochemical system. In a moderately dilute solution, the transport of ions
can be decomposed into two inter-coupled mechanisms:

(1) Electromigration. The transport of ionic species via an electrical potential
gradient. Its mathematical form is similar to convection.

(2) Diffusion. The transport of ionic and neutral species along an activity gradient.

The upwind and downwind positions, referred frequently in the forthcoming
discussion, represent the origin and destination, respectively, of ions driven by
electromigration. Consider electromigration and diffusion balancing a chemical
reaction source term at steady state in an infinitely dilute medium:

ziuiF
dF

dx

� �
dCi

dx
þ Di

d2Ci

dx 2
¼ Gi ð2Þ

As the potential gradient, dF=dx; increases, the strength of electromigration relative to
diffusion increases and the contribution of diffusion becomes insignificant:

ziuiF
dF

dx

� �
dCi

dx
¼ Gi ð3Þ
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The solution of this first-order differential equation requires knowledge of only the
upwind boundary. Thus, in regions of strong electromigration, the space-averaged
concentration of ionic species in the control volume is highly dependent upon the
concentration at the upwind boundary. In the absence of electromigration, both control
volume boundaries have equal influence on the control volume. When the potential
gradient is negligible, no electromigration occurs and (2) becomes:

Di
d2Ci

dx 2
¼ Gi ð4Þ

Equation (4) is a form of the diffusion equation and conditions at both surrounding
boundaries are required for its solution. Mathematically accounting for the dynamic
boundary influence encountered in electrolytic mass transport problems requires the
calculation of an upwind factor, a weighting parameter that adjusts the relative
influence of the upwind node proportionate to the relative strength of electromigration
versus diffusion. The upwind factor, a, modifies the interpolated value at an interface
between two control volumes:

Ciþð1=2Þ ¼
1 þ a

2
Ci þ

1 2 a

2
Ciþ1 ð5Þ

Here, i is a spatial node index. The mathematical description of a is based upon the
solution of an electromigration-diffusion balance and its derivation follows.

2.2 Model derivation
The velocity of an ion migrating through an electrical field is (Newman, 1973):

vi ¼ 2ziuiF
dF

dx
ð6Þ

The velocity of an ion under the influence of pure diffusion is:

vi ¼ 2
Di

Dx
ð7Þ

The ratio of the two velocities gives a Peclet number for the electrolyte mass transport
problem:

P ¼
ziuiFDx

Di

dF

dx
ð8Þ

The net mass flux across an arbitrary interface driven by an electrochemical potential
gradient is described as:

N i ¼ 2
Di

RT
Ci7 ~mi ð9Þ

Assuming that moderately dilute solution theory is applicable, the electrochemical
potential gradient can be segregated into an activity gradient (diffusion) and potential
gradient (electromigration) contribution:

Ni ¼ 2Di7Ci 2 DiCi7 ln gi 2 ziuiFCi7F ð10Þ
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A pseudo-steady state mass balance on an infinitesimal one-dimensional (1D) control
volume may be written:

7 ·Ni ¼ 0 ð11Þ

The pseudo-steady state assumption is valid provided that relatively small time steps
are used. Equation (11) also assumes negligible chemical reaction – a valid assumption
when chemical reactions occur much faster than mass transport. Substitution of (10)
into (11) and subsequent application of the chain rule and rearrangement yields the
following equation (in 1D):

d2Ci

dx 2
þ

ziuiF

Di

dF

dx
þ

d ln gi

dx

� �
dCi

dx
þ

ziuiF

Di

d2F

dx 2
þ

d2ln gi

dx 2

� �
Ci ¼ 0 ð12Þ

Poisson’s equation for charge density describes the electrical potential distribution for
a given electroneutrality condition:

d2F

dx 2
¼ 2

d

1
ð13aÞ

where d is the charge density:

d ¼ F
j

X
zjCj ð13bÞ

Equation (13a) can be substituted into equation (12) to yield:

d2Ci

dx 2
þ

ziuiF

Di

dF

dx
þ

d lngi
dx

� �
dCi

dx
þ 2

ziuiF

Di1
dþ

d2ln gi

dx 2

� �
Ci ¼ 0 ð14Þ

By substitution of equation (8) into (14), this second order homogenous linear ordinary
differential equation can be written in terms of the Peclet number:

d2Ci

dx 2
þ

P

Dx
þ

d lngi
dx

� �
dCi

dx
þ 2

ziuiF

Di1
dþ

d2ln gi

dx 2

� �
Ci ¼ 0 ð15Þ

Equation (15) can then be expressed as:

j
d2Ci

dx 2
þ c

dCi

dx
þ zCi ¼ 0 ð16Þ

where:

j ¼ 1

c ¼
P

Dx
þ

d lngi
dx

z ¼ 2
ziuiF

Di1
dþ

d2ln gi

dx 2

The over-damped solution of equation (16) is the desired physically realistic
non-oscillatory solution. This occurs when c 2 . 4jz: To ensure that the problem is
always over-damped, two assumptions are made to eradicate the coefficient, z:
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(1) Any charge separation in an electrolytic solution invokes powerful forces that
quickly reinstate electroneutrality. Outside of the electrical double layer region
which is located very near an electrochemically reactive wall (such as a
corroding metal surface), it is reasonable to assume an electrically neutral
system (d ¼ 0).

(2) Where activity coefficient gradients do not vary significantly, it can be
assumed that the second order derivative of the activity coefficient is zero
ðd2ln gi=dx 2 ¼ 0Þ:

With these two assumptions, the coefficient, z; can be neglected:

z ¼ 2
ziuiF

Di1
dþ

d2ln gi

dx 2
¼ 0 ð17Þ

A non-oscillatory solution is then guaranteed across each computational node.
Now consider one computational control volume across which the particular

solution to the ordinary differential equation can be obtained. At the western interface
(x ¼ 0), the concentration is equal to Ciw while at the eastern interface (x ¼ Dx), the
concentration is Cie. Through application of these boundary conditions, the particular
solution of the second order problem is obtained:

CiðxÞ ¼ Ciw þ ðCie 2 CiwÞ
e2

c
j
x 2 1

e2
c
j
Dx 2 1

ð18Þ

Substituting the definition of j and c gives the final form of the solution:

CiðxÞ ¼ Ciw þ ðCie 2 CiwÞ
e2P

0 x
Dx 2 1

e2P
0

2 1
ð19aÞ

where:

P
0

¼ P þ
d ln gi

dx
Dx ð19bÞ

Equation (19b) shows that the magnitude of the activity coefficient gradient has a
direct effect on the dominance of electromigration in electrolyte mass transport
problems. The activity coefficient gradient accounts for the influence of other ions in
solution of the ith ion. It is the force that propels the ion towards regions of lower ionic
strength. From equation (19a), the concentration at the center of the control volume is
then:

CiP ¼ Ciw þ ðCie 2 CiwÞ
e2

P
0

2 2 1

e2P
0

2 1
ð20Þ

By assuming an upwinding function of the form:

CiP ¼
1 þ a

2

� �
Ciw þ

1 2 a

2

� �
Cie ð21Þ
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Equations (20) and (21) can be solved simultaneously to yield a formula for a:

a ¼ 1 2 2
e2

P
0

2 2 1

e2P
0

2 1

0
@

1
A ð22Þ

When the charge density and second order derivative of the activity coefficient is
assumed negligible, the resulting upwind parameter formula is similar to the
exponential differencing scheme (Spalding, 1972; Raithby and Torrence, 1974).
However, unlike convective problems where the Peclet number (Reynolds number) is
dependent only upon the velocity and viscosity of the fluid, the electrolyte mass
transport Peclet number is dependent upon the velocity of the ion under the influence
of an electrical field, the diffusivity, and the magnitude of the activity coefficient
gradient. This is an 1D scheme which can be applied to multidimensional problems.
However, application of an 1D scheme to 2D and 3D problems will introduce artificial
viscosity effects (Raithby and Schneider, 1980). This phenomenon may be controlled
through grid refinement. The spatial upwind parameter profile is shown for a range of
Peclet numbers in Figure 1.

There are cases where the assumptions used to obtain equation (22) are not valid.
Two examples are the modeling of transport in regions of strong-coupled
electromigration and diffusion, where charge density cannot be neglected, and in
electromigration-dominated problems where the activity coefficient gradient may vary
significantly in space. In these cases, equation (22) should not be used. Instead, the
value of ðc 2 2 4jzÞ should be determined and, based upon its sign, the appropriate
solution to the ordinary differential equation (under-damped, over-damped, or critically
damped) should be selected. Then, Ci P, Cie, and Ciw may be calculated. The appropriate
value for a can be obtained through rearrangement of equation (21):

a ¼
Ciw þ Cie 2 2CiP

Cie 2 Ciw
ð23Þ

Depending upon the size of the second order derivative of the activity coefficient, and
in particular, the charge density, the predicted upwind parameter may not be
physically realistic (the solution may be under-damped). The following section

Figure 1.
The spatial upwind
parameter profile across a
computational control
volume over a range of
peclet numbers
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demonstrates the effect of charge density on the stability of the mass transport
problem.

2.3 Stability of the electrolyte mass transport hybrid differencing scheme
Unlike the convection-diffusion equation, the electromigration-diffusion mass transport
problem is influenced by an electrical field. The mass transport problem is therefore
governed by the following condition: unless a very large amount of work is done on the
system, the solution must possess negligible charge density. To obtain the exponential
formula for the upwinding parameter previously presented, the solution charge density
was assumed to be negligible. For this assumption to be valid, care must be taken to
ensure that the numerical solution algorithm respects the electroneutrality condition
inherent to the mass transport mechanism. If the charge density tolerance during the
numerical solution of the mass transport equation is too high, the steady state balance
between electromigration and diffusion will become under-damped. The particular
solution of the under-damped electromigration-diffusion balance equation (c 2 , 4jz) is:

CiðxÞ ¼ etx CiwcosðbxÞ þ ½Ciee2tDx 2 CiwcosðbDxÞ�
sinðbxÞ

sinðbDxÞ

� �
ð24aÞ

where the real and imaginary components, respectively, of the complex conjugate roots
of the characteristic equation are:

t ¼ 2
c

2j
ð24bÞ

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4jz2 c 2Þ

p
2j

ð24cÞ

This solution predicts a sinusoidal concentration profile across the computational
control volume and is clearly physically unrealistic. Figure 2 shows the predicted control
volume concentration profile for a range of very small charge densities. As the charge
density increases, the solution becomes under-damped; the increasingly sinusoidal
concentration profile causes physically unrealistic predictions of the upwind parameter.

Figure 2.
Solution of the

electromigration-diffusion
balance equation across a

computational control
volume as solution charge
density increases. Critical

damping occurs when
d < 7:7 £ 1029 C=m3
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When numerically based or artificial charge density is present, equation (14) shows
that the concentration profile is now dependent upon not only the gradient of the
concentration field but also on the value of the concentration. This introduces new
instability problems – as the concentration profile rises or falls, the profile will mutate
to an extent proportionate to the level of charge density in solution. Figure 3 shows this
effect. Figure 3(a) shows that the shape of the concentration profile is invariant with the
value of concentration for an electrically neutral system. However, even before
the critical damping charge density (approximately 7:7 £ 1029 C=m3 for this example)
is surpassed, the concentration profile begins to bulge beyond the electrically
neutral profile, a feature that is exaggerated as the concentration profile boundary
conditions are increased. Where the concentration profile extends beyond the range
½Cðx ¼ 0Þ; Cðx ¼ DxÞ�; the predicted upwind parameter will lie outside of [-1, 1].
An acceptable value of the upwind parameter lies in the range [-1, 1]. Figure 3(c) is a
slightly under-damped system. Examination of equation (24a) shows that the real
component of the complex conjugate roots of the characteristic equation, t, determines
the amplitude while b, the imaginary component of the roots, controls the frequency.
Because b is relatively small to t, the period of the oscillation is greater than Dx and the
sinusoidal influence is not observable. As the value of the boundary conditions are
increased, the concentration profile extends well beyond ½Cðx ¼ 0Þ; Cðx ¼ DxÞ� and
unrealistic values of the upwind parameter will be predicted. In Figure 3(d), the
frequency of the oscillations has increased due to the increased imaginary component
of the complex conjugate roots. The sinusoidal component of the mass balance
equation solution dominates and an unrealistic sinusoidal concentration profile is
observed. The amplitude of the oscillations increases as the concentration profile
is raised.

Figure 3.
Solution of the
electromigration-diffusion
balance equation across a
computational control
volume as the
concentration profile is
shifted upwards; a) d ¼
0 C=m3; b) d ¼ 5 £ 1029; c)
d ¼ 1 £ 1028 C=m3; c)
d ¼ 1 £ 1027 C=m3:
Critical damping occurs
when d < 7:7 £
1029 C=m3
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Results presented in the preceding discussion show that even slight charge density
arising in the numerical solution algorithm is detrimental to the fidelity of the predicted
upwind parameter. This feature makes electrolyte mass transport unique from other
forms of transport and adds an additional concern when developing codes for its
prediction. A method has been developed by Heppner et al. (2002) to eradicate charge
density in an electrolyte solution.

3. Discrete transport model development
Transport of ions and neutral species in a moderately dilute electrolyte solution under
the influence of an electrochemical potential gradient can be described by:

›Ci

›t
¼ 2ziuiF

7Ciði þ idpÞ

k
þ Ci

d

1

� �
þ Dið7

2Ci þ 7Ci7 ln gi þ Ci7
2ln giÞ þ Gi ð25Þ

where the current density induced by diffusion potential is:

idp ¼ F
Xk

j¼1

zjDjð7Cj þ Cj7 ln gjÞ ð26Þ

and the local net charge of the solution is given by equation (13b). Discretization using
central finite difference approximations to first- and second-order derivatives,
respectively, transforms (25) and (26) to a second order accurate analog form:

CiP 2 C0
iP

Dt
¼ 2ziuiF

Cie 2 Ciw

Dx

iP þ idpP

kP
þ CiP

dP

1

� �

þ Di

CiE þ CiW 2 2CiP

Dx 2
þ

ðCie 2 CiwÞðlngiE 2 ln giWÞ

2Dx 2

þCiP
ln giE þ ln giW 2 2 lngiP

Dx 2

0
BBB@

1
CCCAþ GiP

ð27Þ

idp ¼ F
Xk
j¼1

zjDj
Cje 2 Cjw

Dx
þ CjP

ln gje 2 ln gjw

Dx

� �
ð28Þ

The P, E, and W nodes in this fully implicit discrete transport equation are the point,
east and west nodes, respectively. The e and w subscripts denote the east and west
control volume interfaces, respectively, located halfway between the surrounding
nodes for a uniform grid. The expression of interfacial properties – Cie, Ciw, lngie; and
ln giw – as functions of nodal values is accomplished using the upwind parameter
formulation, i.e.:

Cie ¼
1 þ a

2
CiP þ

1 2 a

2
CiE ð29Þ

Substitutions analogous to equation (29) are made for each interfacial property
appearing in equation (27) to yield the following discrete mass transport equation:
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CiP 2 C0
iP

Dt
¼ 2ziuiF

1þa
2 CiP þ 12a

2 CiE 2 1þa
2 CiW 2 12a

2 CiP

Dx

iP þ idpP

kP

þCiP
dP

1

2
66664

3
77775

þ Di

CiE þ CiW 2 2CiP

Dx 2
þ

ðCie 2 CiwÞðlngiE 2 ln giWÞ

2Dx 2

þCiP
ln giE þ ln giW 2 2 lngiP

Dx 2

0
BBB@

1
CCCAþ GiP

ð30Þ

By sequestering time-step lagged non-linear terms into transport coefficients, equation
(30) can be rearranged into a linear algebraic discrete transport equation which is
solved iteratively:

aPCiP ¼ aECiE þ aWCiW þ a0
PC

0
iP þ GiDx ð31Þ

Using the proposed hybrid differencing scheme to express the interfacial
concentrations, Cie and Ciw, as nodal values, the discrete transport coefficients are:

aE ¼
Di

Dx
1 þ

P
0

P

2
þ

P
0

Pa

2

�����
�����

" #
ð32Þ

aW ¼
Di

Dx
1 2

P
0

P

2
þ

P
0

Pa

2

�����
�����

" #
ð33Þ

a0
P ¼

Dx

Dt
ð34Þ

aP ¼ aE þ aW þ a0
P þ ziuiF

dP

1
Dx2 Di

ln giE þ ln giW 2 2 ln giP

Dx
ð35Þ

where the local Peclet number, P
0

P; is defined in equation (19b). The diffusion potential
current density, equation (28), is also recast in terms of nodal values using the upwind
formulation. After rearrangement, the following expression results:

idp ¼ F
Xk
j¼1

zjDj

2aCjP þ CjE 2 CjW 2 aðCjE þ CjWÞ

2Dx

þCjP
2a lngjP þ ln gjE 2 ln gjW 2 aðlngjE þ ln gjWÞ

2Dx

0
BBB@

1
CCCA ð36Þ

Patankar (1980) stated that to ensure a physically realistic solution, the point
coefficient should be the sum of the east, west, and previous iteration point coefficient
and each coefficient should be positive. This mass transport model follows not only
Patankar’s suggestion but also contains non-linear influence from a net solution charge
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imbalance, dP, and the second order derivative of the activity coefficient. The point
coefficient is extremely sensitive to this charge imbalance which can possess a positive
or negative value. A negative dP will reduce the diagonal dominance of the solution
matrix. Furthermore, it is shown in Figure 2 that a charge imbalance will cause the
hybrid differencing scheme to give unrealistic upwind parameters. The second order
activity coefficient gradient will also have an effect on the convergence of the mass
transport problem. If the second order gradient of the activity coefficient is positive in
sign, it will increase the diagonal dominance and the speed of convergence of the
system. Conversely, a positive second order gradient of the activity coefficient will
decrease the diagonal dominance. A diagonally dominant linear system satisfies the
Scarborough criterion and is guaranteed to converge by the Gauss-Seidel method.
The Scarborough criterion is (Scarborough, 1958):

jaEj þ jaWj

jaPj

# 1 ðfor all grid pointsÞ

, 1 ðfor one grid pointÞ

(
ð37Þ

The diagonal dominance of the coefficient matrix is largely controlled by a0
P –

decreasing the time step increases a0
P and the point coefficient, aP: However, if the

charge density and/or the second order activity gradient is significant, extremely small
time steps may be required to negate these influences and ensure satisfaction of (37)
(Heppner et al., 2002). The charge density term in the aP coefficient formulation is
extremely sensitive to charge density. Therefore, to ensure the diagonal dominance of
the matrix, Heppner et al. recommended the removal of the electroneutrality deviation
term from the ap coefficient through an operator splitting strategy (Heppner et al.,
2002). After removal of the charge density term, the Scarborough Criterion for the
variable UDS can be shown to be:

jaEj þ jaWj

jaPj
¼

1

1 þ 1

2þP
0

Pa

Dx 2

DiDt
2 lngiE 2 lngiW þ 2 ln giP

	 
 ð38Þ

Equation (38) is bounded between 0 and 1 when:

0 #
1

2 þ P
0

Pa

Dx 2

DiDt
2 ln giE 2 ln giW þ 2 ln giP

� �
# 1 ð39aÞ

or when:

21 #
1

2 þ P
0

Pa

Dx 2

DiDt
2 ln giE 2 ln giW þ 2 lngiP

� �
# 22 ð39bÞ

Therefore, the Scarborough criterion is not bounded between 0 and 1 when:

22 ,
1

2 þ P
0

Pa

Dx 2

DiDt
2 ln giE 2 ln giW þ 2 ln giP

� �
, 0 ð39cÞ

Condition (39a) would be guaranteed if (xE, ln gi E) (xW, lngi W), and (xP, ln gi P) were
points on a linear function. However, if ln gi possesses a non-zero second order gradient
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over the range ½xW; xE�;condition (39a) may not be satisfied. The second order
gradient of the activity coefficient is capable of inducing instability through reduction
of diagonal dominance in the mass transport calculation procedure. To ensure that the
Scarborough Criterion is satisfied, the time step should be lowered where the second
order gradient of the activity coefficient is significant and positive in sign. If condition
(39a) or (39b) is met, and if Dirichlet conditions exist at any physical domain boundary,
the discrete mass transport problem satisfies the Scarborough Criterion. Figure 4
shows the east transport coefficient divided by Di=Dx against the Peclet number.
The west coefficient is the mirror image of the east coefficient reflected across the
y-axis. By Figure 4, it is shown that the east and west transport coefficients will never
acquire a negative value.

4. Modeling of the Fu and Chan moving boundary experiment
Fu and Chan placed a silver anode plug at one end of a long glass tube. The tube
opened into a large beaker in which a silver cathode was immersed. Initially, the entire
apparatus was filled with a 0.1 M KNO3 solution. A current density of 318mA/cm2 was
applied across the tube length inducing silver dissolution at the anode plug and silver
plating at the cathode. The electrical current forced Agþ and Kþ ions out of the tube
towards the cathode while NO3

2 ions were driven towards the silver anode plug.
A visible moving boundary was formed where the aqueous solution transitioned from
being predominantly KNO3 to being predominantly AgNO3. The rate of movement of
this boundary indicated the rate of mass transport in the tube. Fu and Chan accurately
recorded the position of the moving boundary. Using data obtained from the moving
boundary experiment performed by Fu and Chan (1984), the ability of this hybrid
differencing scheme to improve the physical realism of solutions of the electrolyte mass
transport equation is showcased.

Using the present transport model, the boundary region predicted using UDS and
HDS is compared. For both differencing schemes, the solution domain was discretized
into 1,000 nodes ðDx ¼ 5 £ 1023 cmÞ and a time step of 0.1 s was used. The solution
algorithm is shown as a flow chart in Figure 5.

Figure 6 shows the predicted moving boundary region after 5, 20, 30, and 40 min
using both UDS and HDS. The vertical line in each figure represents the position of the
boundary at the respective time (interpolated from raw data) observed experimentally

Figure 4.
The variation of aEDx=Di

with the Peclet number
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by Fu and Chan. At each time, discretizing the mass transport model using HDS, rather
than UDS, results in the formation of steeper concentration gradients, and thus faster
mass transport rates, throughout the moving boundary region. The fact that using
HDS predicts increased mass transfer rates is evidenced by both the faster movement
of the predicted Agþ /Kþ concentration profile intersection, and by a lower AgNO3

concentration at the anode-solution interface (not seen in figure). Comparison of
Figure 6(a) and (b) shows that sometime between 5 and 20 min after the start of the
simulation, the moving boundary predicted using HDS passes the moving boundary
predicted using UDS. In each case, the mass transport model discretized using HDS
either matches or improves on the accuracy of the same transport model discretized
using UDS. The average error between the predicted boundary position and that
measured experimentally has decreased by 61 percent by using HDS rather than UDS.
The greatest increase in accuracy is seen in Figure 6(d) where the error decreased by
87 percent. Using the new differencing scheme enables the discrete mass transport
model to more accurately predict the experimental observations of Fu and Chan.

Figure 5.
The mass transport model

solution algorithm
presented as a flow sheet
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4.1 Effect of charge density
The previous section showed the ability of the discrete mass transport model coupled
with the HDS upwind parameter solver to accurately predict mass transport in an
electrolytic system. Inherent to HDS is the assumption of electroneutrality throughout
the system. Although a physical system will not possess an appreciable charge density
unless a substantial amount of work is done on the system, numerical charge density
arising through solution of the constitutive mass conservation equations can cause
oscillations in the solution of the electromigration-diffusion balance equation.
Obviously, predicted concentration profiles that are sinusoidal and feature negative
values are not physically realistic. Therefore, one cannot expect to obtain a physically
meaningful value of the upwind parameter from such a profile. The sensitivity of the
numerical solution to accumulated charge density in the solution is now tested. Figure 7
shows the predicted moving boundary region as the amount of charge density in the
solution is increased. Increased charge density had a large effect on the stability of the
numerical algorithm. As the charge density was increased, the mass transport equation
became more difficult to solve. When the charge density was set to 1029 C/m3 or
greater, the solution to the migration-diffusion equation became under-damped and
the simulation ultimately failed to converged. When the charge density reached a
value such that it caused under-damping of the predicted concentration profile, the
simulation immediately failed. However, until the profile became critically damped, the
simulation was able to proceed but provided results with significant amounts of error.

4.2 Effect of spatial step size
As the spatial step size is decreased, the predicted concentration profiles approach the
exact solution to the constitutive equations. However, decreasing the step size also
affects the predicted Peclet number and, thus, the upwind parameter. Figure 8 shows

Figure 6.
The calculated moving
boundary region of the Fu
and Chan experimental
apparatus; a) after 5 min;
b) after 20 min; c) after
30 min; d) after 40 min. In
each sub-figure, the
vertical line represents the
experimentally observed
position of the boundary
(boundary position was
linearly interpolated from
raw data)
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the effect of increasing the spatial step size. As Dx was increased, the predicted upwind
profile approached unity (UDS) while at very small values of Dx, the upwind parameter
approached zero (CDS). As Dx decreases, the profile in the control volume approaches
the linear profile predicted by differential calculus (the tangent line) and a central
differencing scheme becomes appropriate. Figure 8 was generated using the
mathematical model describing Fu and Chan’s moving boundary experiment.

Besides having a direct impact on the value of the upwind parameter, the step size
showed significant influence on the predicted concentration profile in the moving
boundary region. Figure 9 shows the variation of the predicted moving boundary
Agþ /Kþ concentration profile after 10 min as the number of computational nodes used
in the numerical solution is increased. The predicted concentration gradients of both
Kþ and Agþ were predicted steeper as the number of computational nodes increased.
However, the velocity of the moving boundary also decreased with increasing
computational nodes. Where an inadequate number of nodes were used, a less steep
concentration gradient and an increased rate of mass transport was predicted – a
phenomenon that defies physical transport laws. By inspection of the electromigration

Figure 7.
The effect of charge

density on the predicted
moving boundary region

of the Fu and Chan
experiment

Figure 8.
The calculated unit charge

upwind parameter as a
function of space step size,
Dx, for the model of the Fu

and Chan experiment
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term of equation (25), the rate of mass transport due to electromigration is proportional
to the concentration gradient. Therefore, the predicted profile becomes physically
unrealistic as the number of nodes decrease. Furthermore, the predicted boundary
position moves further away from the experimentally observed boundary position
(1 cm after 10 min) (Fu and Chan, 1984).

4.3 Computational efficiency
The additional computational effort or simulation time required when using HDS
rather than UDS was investigated. At each iteration, the use of HDS requires the
computation of the Peclet number and the evaluation of the upwind parameter. The
upwind parameter calculation is particularly expensive as it requires the computation
of numerous exponential functions, each of which are computed as truncated
Maclaurin series expansions. Because the additional time required to obtain a
converged solution when using HDS is dependent upon both the specific mass
transport problem being solved and the specifications of the computer, the
computational efficiency of using HDS was investigated using the percentage
increase in time, rather than the actual increase in time. The following results are
therefore specific to modeling the Fu and Chan experiment but are independent of the
processor speed of the computer being used. The ratio of the total number of operations
that the computer is required to perform when solving the transient mass transport
problem using HDS, rather than UDS, can be calculated from the following expression:

Operations ratio ¼
ðHDS operations per iterationÞðHDS iterationsÞ

ðUDS operations per iterationÞðUDS iterationsÞ
ð40Þ

The operations ratio is a measure of the increased computational effort required to use
HDS rather than UDS. Because the operations required per iteration are fixed for a
particular grid, variation in the value of the operations ratio is due solely to changes in
the ratio of the number of iterations required to use HDS to the number of iterations
required to use UDS. Figure 10 shows the percentage change in simulation time
resulting when HDS, rather than UDS, is used in the mass transport solver as the

Figure 9.
The effect of step size on
the predicted boundary
region of the Fu and Chan
experiment after 10 min

HFF
15,8

858



number of nodes is increased. The ease of convergence of the model can be estimated
by the diagonal dominance of the transport coefficient matrix. Examining the relevant
terms from equation (38), the following relationship may be written:

jaP j

jaEj þ jaWj
/

Dx 2

P
0

Pa
ð41Þ

Equation (41) seems to imply that the diagonal dominance will increase for a coarser
solution grid (Dx becomes larger). However, both a and P

0

P are proportional to Dx
creating a competing effect of Dx upon the diagonal dominance. This competition is
manifested as the peculiar functionality of the computational efficiency upon the
number of nodes seen in Figure 10. In general, the results of Figure 10 show that, as
the number of nodes increase, the transport coefficient matrix becomes less diagonally
dominant and the additional effort required using HDS rather than UDS increases
(i.e. the computational efficiency of the model decreases).

5. Conclusions
Based upon a pseudo-steady state balance between electromigration and diffusion, a
novel method to interpolate interfacial properties from nodal values for electrolyte mass
transport under the influence of an electrical potential field has been developed.
Simulation of the moving boundary experiment of Fu and Chan (1984) provided a means
of quantifying the influence of the upwind parameter on the predictions of the electrolyte
mass transport model. The following conclusions can be made from this research:

. Use of HDS rather than UDS results in predictions that more closely match the
experimental observations of Fu and Chan. The error between model predictions
and experimental data are reduced by an average of 61 percent when HDS
rather than UDS is used. Therefore, using the 1D solution of the
electromigration-diffusion balance equation as a means to prescribe appropriate
weighting for approximation of interfacial properties is valid for electrolyte mass
transport modeling.

. Adjustment of the time step in regions where the second order gradient of the
activity coefficient is significant and positive in sign will ensure that the mass

Figure 10.
The percentage increase in

simulation time required
when using the hybrid

differencing scheme rather
than the UDS as a function

of the number of nodes
used in the numerical

solution
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transport problem coupled with HDS satisfies the Scarborough criterion, a
condition that checks diagonal dominance. Thus, convergence of the matrix of
transport coefficients, assembled at each iteration, by the Gauss-Seidel method is
guaranteed. Transport coefficients are guaranteed to be positive thus ensuring a
physically realistic solution (Patankar, 1980).

. The presence of electrical charge density has a detrimental effect on the stability of
the mass transport solution algorithm. As charge density increases, the solution
to the steady state electromigration-diffusion equation approaches critical damping.
Physically unrealistic oscillations develop in the predicted concentration profile
thus altering the predicted upwind parameter. Charge density may also reduce the
diagonal dominance of the coefficient matrix during the solution of the mass
transport model and reduce the speed of convergence. Thus, charge density must be
annihilated through direct solution of the Poisson equation for charge density or
through the method proposed by Heppner et al. (2002).

. When the charge density and the second order gradient of the activity coefficient is
negligible, the hybrid differencing scheme for electrolyte mass transport possesses
the form similar to the exponential differencing formula used in computational fluid
dynamics (Spalding, 1972; Raithby and Torrence, 1974). Therefore, electromigration
in a stagnant, electrically neutral, infinitely dilute electrolyte under the influence of a
potential gradient is analogous to convection under the influence of a pressure
gradient and the use of a Peclet number-based method to estimate interfacial
properties is appropriate for electrolyte mass transport.

. The Peclet number for mass transport in a non-ideal solution is affected not only
by the potential gradient but also by the activity coefficient gradient. The effect
of the activity coefficient gradient is a manifestation of the force exerted upon an
ion to move towards regions of decreasing ionic strength. The additional term in
the Peclet number formulation accounts for interactions between the ion of
interest and other ions in solution.

. The computational efficiency of the mass transport model coupled with HDS is
highly dependent upon the spatial step size. Thus, the percentage increase in
simulation time varied between 6 and 43 percent (based on spatial step size).
However, the error between the simulation results and the observations of the
Fu and Chan experiment increased by as much as 87 percent by using HDS
rather than UDS.

. This differencing scheme represents the first scheme developed specifically for
the solution of the electromigration-diffusion equation. Previous schemes, such
as the exponential scheme, power law scheme, and other schemes, have been
developed for the convection-diffusion equation (refer to Patankar (1980) for a
concise summary of these differencing schemes). The electromigration-diffusion
equation is unique and different from the convection-diffusion equation in that
its solution, if physically realistic, must satisfy the condition of charge neutrality
(or very low charge density). Thus, mass transport of each ion in solution is
mathematically very strongly inter-coupled with mass transport of all other ions.
This unique feature is represented in the differencing scheme by the activity
coefficient term in the modified Peclet number formula (equation (19b)) and by
the effect of charge density upon the upwind parameter.
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